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ABSTRACT

Variogram analysis is a necessary step in geostatistics and mineral resource evaluation to describe
the spatial dependence of continuous and categoricalregionalized variables. It is an exploratory data
tool, as well as a key input for all the prediction and simulation algorithms based on kriging.

Variogram analysis has two major steps. The first one is the calculation of experimental variogram s
by using possibly hundreds of thousands of sampling data. The high computational cost of this step
is primarily given by the calculations of the distances between all the combinations of pairs of data
locations, resulting in repetitive and independent operations . In this research, we propose a General
Purpose Graphic Processing Unit (GPGPU) algorithm for the multi -directional direct and cross
variogram calculation , to parallelize the computation of the distance s between pairs of data locations
given the independence of the operations.

The secondstep isthe fitting of a variogram model using a set ofnested structures. Traditionally, this
fitting is performed manually using three orthogonal directions. We propose a GPGPU Particle
Swarm Optimization (PSO) fitting scheme that allows adjusting several directions and variables
simultaneously under the linear model of corregionalization . The fitting aims to reduce the mean
squared error between the experimental variogram and variogram model , while ensuring the
consistency of the model.

The results show a significant reduction in experimental variogram computation time, compared to
the traditional sequential CPU algorithm. Both the GPGPU experimental calculation and GPGPU
PSO fitting provide a suitable autom atic method to analyze large datasets such asblasthole data or
Landsatimages. The approach isillustrated using a dense blasthole datasetto fit local variograms to
be further used asan input in short-term resources models.
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INTRODUCTION

The experimental variogram calculation and the variogram model curve adjustment are highly
required in the mining industry, being both computed many times for each considered data set.
Improve ments on the computation time of these algorithms result in a reduction of the total time
required to complete the variogram calculation process, impacting directly on the mining operation

practices.

The GPU parallel programming platforms and APIs development, and the widespread growth of
GPU-based algorithms used by developers and researches to solve diverse technological and
scientific problems, offer a feasible alternative to implement highly parallelized algorithms. A GPU

has hundreds more cores than a CPY and consequently much more threads to parallelize, becoming
an ideal and affordable hardware for repetitive independent computations over extensive data sets .

This paper shows the advantages of a dedicated hardware for repetitive computations in the
variogram calculation and automatic model fitting, comparing the computation time of experimental
variogram from drillholes and blasth oles samples using a CPU-based anda GPU-based algorithm.

Furthermore, we propose a parallel optimization algorithm th at searchesfor the best fitting between
the experimental variogram and the variogram model , which is a linear combination of spherical,
exponential, cubic and gaussian models, minimizing the Mean Squared Error between both
variograms. The proposed method considers a reduced number of parameters that need to be
intro duced by the users.

We propose a study casefor experimental validation where several local experimental variograms
are obtained around each centroid of the block model to have a more realistic texture and enhance
the prediction model . The approach isapplied in a real data setof a Chilean copper porphyry deposit

in an open pit mine operation using blastholes and drill holes databases

NOMENCLATURE
BH Blastholes
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.
DH Drillh oles
gamv Variogram calculation of scattered data (GSLIB program)
GPGPU General-Purpose Computing on Graphics Processing Units.
GPU Graphics Processing Units.
GSLIB Geostatistical Software Library
LU Lower Upper (decomposition)
MSE Mean Squared Error
PSO Particle Swarm Optimization.
METHODOLOGY

This section shows the implementations of the experimental variogram and its model fitting and the
comparison between the CPU-based and GPU-basedalgorithms. The applications where GPU-based



GEOMIN -MINEPLANNING - 2017 | 5 nterationa Semivar on wine panming. -

algorithms show advantages are fundamentals to get better local information about the distribution
of continuous variables in the space.

CPU Traditional Experimental Variogram Algorithm

The experimental semivariogram algorithm used as comparative base is a GSLIB (Geostatistical
Software Library) CPU -based implementation. The traditional semivariogram is defined by:

Q —— AW O Q (1),
"R o s

where ®w and ® @ "Q are a pair of values of the variable used to compute the semivariogram,
0 "Q is the number of data pairs that are separated atdistance "Q and @ is the location associated to
the pair "Q

For the experimental variogram calculation several parameters are needed such asthe lag distance,
that represent the size of the bin in which we must divide the spaceto accumulate the distance values,
and the ¢ & ¢tf@t represents the number of total bins and determines the maximum possible range.
0 aa®ixhe array constructed with the a ¢and ¢ a dpddameters and determine the center of each
bin. The azimuth, dip, azimuth tolerance and dip tolerance, determine the angles that define the data
subset.

Figure 1 shows the pseudo-code of the CPU-based multivariable semivariogram, where "Cand “Care
the index of the samples selected from Data seth ‘@ is the euclidean distance between the samples
pair "fQ ¢ 6 @ &is the number of variables that participate in the co-variogram, 3®is the product
between the differences incof a pair of samples of continuous variables, & ¢ "Q0 @A O O O ake
accumulators of & @ and 3@ respectively, 30 6 ¢ ¢i®thde counter of each samples pair from a pair
variables computed. Finally, the 'Q"Qi 0 I®© éhg experimental distance (W ®)Ydomputed by the
division of & ¢ "Q0 ez 6 ¢ & andv o1 Csithe experimental semi-variogram values (@& 6 Qi
obtained from the Equation 1.:
fori € DataSet:
for j € DataSet:
lagij = m
for lagrent € all_lag:
for var € (num_var+num_var) :

AZ = (Zi,varl - Zj,varl) * (Zi,varz - Zj,vm'z)

lagAcum[lag ey rens, var] += lag;;

AZAcumllagoyrrent: var] += AZ

AZContallagoyrens,var] +=1

for k € (all_lag * num_var+num_var):
distExplk] = lagAcumlk] JAZContalk]
varExplk] = AZAcum[k] /(2 * AZConta[k])

Figure 1 Pseudocodeof CPU Traditional Experimental Variogram Algorithm
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This semivariogram implementation results in high demand of computer resources, mainly given by
four nested cyclesas can be seen in Figure 1The computation time increases quadratically (0 & )
where £ is the data set size (sually blastholes (BH) or drill holes (DH) samples), therefore, the first
two nested cycles ("Q¢& ""°Q¢ Tin Figure 1) determine the algorithm complexity . The following two
nested cyclesdepend on parameters sucha ¢ ¥Qa ¢dfples, angular tolerancesand how many pairs
of continuous variables participate (co-variogram).

GPU Experimental Variogram Algorithm

Using the GPU for tasks traditionally managed by CPU (such as linear algebra computations), instead
of computer graphics, is called Generalpurpose computing on graphics processing units (GPGPU).
For GPGPU approach we use CUDA, that is the proprietary language of NVIDIA® that allow s to
code based in C language and take access to specific functionto use the multip le threads and GPU
global memory (Lindholm et al., 2008). The CUDA threads are indexed using 1-Dimensional , 2-
Dimensional Gfto, or 3-Dimensional ofuftx grid. These threads are organized in blocks, that also
are indexed 1D, 2D or 3D. The maximum number of threads per block is given by the CUDA

capability of the GPU hardware. The maximum number of active blocks is also limited by hardware.

The maximum number of blocks that can be processed at the same time is relatedto the number of
GPU multiprocessors (Li, Kecman & Salman, 2010)

The variogram algorithm parallelization is suitable because thecomputation the distance between
each pair of samplesof the data set can be done by multiple threads independently (Peredo, Ortiz &
Herrero, 2015). The distances arestored in an array, where each register represens an individual lag
with the respective tolerance. The GPU-based implementation is not memory intensive but is
demanding in CUDA cores resources (humber of blocks per grid, and threads per block).

In the Figure 2 we present the GPU experimental variogram pseudocode. The elements shown in the
pseudocode GPU Figure 2 are similar to the elements presentedin the pseudocode CPU Figure 1,
however, the GPU Kernel 1 replaces the 2 main nested cycles that indexes the samples pair
implemented in the CPU approach. The Kernel 1 is implemented with 2D blocks grid, to keep one
thread for "Qndex and the other thread for "Qndex (Figure 2) independently of the samples pair. The

Kernel 2 is implemented with 1D blocks grid, whose threads compute a simple arithmetic operation

using the accumulated values from Kernel 1.
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CUDA Kernel 1: Accumulator

i =thread. X

j =thread.Y

lag;; = VAxZ + Ay? + Az?

forlag yrren: € all_lag:

for var € (num_var+num_var) :
AZ = (Z:’.varl - j,varl) * (Zi,varz - Zj,varz)
lagAcum|lageyyrent, var] += lag;;
AZAcum(lagoyrrent, var] += AZ

AZContallageyrren. var] +=1

CUDA Kernel 2: Variogram

k = thread. X

distExp(k] = lagAcum[k] /AZContalk]
varExplk] = AZAcuml[k] /(2 » AZConta[k])

Figure 2 Pseudocode GPU Traditional Experimental Variogram Algorithm

The Figure 3 shows the difference between the sequential and parallel algorithm. The first case uses
only one thread (CPU) and the second case uses multiple threads (GPU). Additionally, the GPU

algorithm takes advantage of the symmetry when computing the d istance between the first sample

and the second sample, thereforeonly requires completing the superior triangular matrix.
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Figure 3 GPU vs CPU gamv algorithm

CPU Traditional Variogram Model Fitting Algorithm

The experimental variogram allows to quantify the spatial changes in a continuous variable based on
the real samples data, but the objective isto use this information to create estimation results, i.e. get
suitable data in the locations where the continuous variable values are unknown. The most used
estimation algorithm is called cokriging, which has a restriction: The covariance matrix that
represents the spatial relationship of the continuous variable must be invertible. To handle this
restriction, the matrix is required to be positive semi-definite, which implies that the variogram at
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least must be obtained from a linear combination of functions that keep this property. The
variography model must be createdwith the linear combination of basicstructures such asspherical,
exponential, cubic, and gaussian models, keeping the invertibility propriety, and adjust ing as much
as possible to the experimental variogram.

In the industry is very common to use specialized software (as Isatis®) to get the variogram model
fitting , but in general these algorithms are poorly automatized. The user must give several
parameters, such asthe angles or the number of nested structuresin the model, among others. When
the software gives a possible solution model, the user canmodify parameter values to try to get a
better fit manually, without any quantified evaluation. This situation is an opportunity to explore an
alternative method to obtain fitted models.

GPU Variogram Model Fitting Algorithm

To reach the best fit between the experimental variogram and variogram model, based on Mean
Squared Error (MSE)criterion , we use a method called Particle Swarm Optimization (PSO). As other
optimization algorithms, PSO tries to minimize an objective function, in this case,the MSE between
the experimental and the proposed variogram model. In the first step, this algorithm creates a
random population of candidate solutions (particles), that move inside the search-spaceduring the
next steps. The movement of each particle is determined by a velocity vector, which is calculated with
the best position known of each particle (individual learning), and the best position known among
all particles (social or global learning). This produce s the movement of the swarm to reach the best
solution, inspired by insects that are looking for food in their habitat.

The proposed variogram models are randomly initialized. Each set of parameters represents the
position of a particle in a n-dimensional space. For example, for atw 0-nested structure, we define a
particle of 17 dimensions (see Figure 4) where each dimension corresponds to an individual
parameter. The parameters that define the curve are: Model Type (Spherical, Exponential, Cubic, or
Gaussian model), RangeX, RangeY, Range Z, Angles X, Angles Y, Angles Z, Partial Sill, and finally
the Nugget. The combination of partial sills from each nested structure, defines the full sill (see Figure
4).



y 4 = | 5" International Seminar on Geology for the Mining Industry
¥ 1 4 | 5" International Seminar on Mine Planning

Model Range Angles
Type X,V Z Ay, Ay, Oy
Y !
1
Nested — '
Structure 0 : 0 1 2 3 4 5 6 :
::::::::::::::::::::::::::::::::::::::::I -
1 @
Nested _.: : 5 _]
Structure1 | 7 8 9 10 11 12 13 £
1
_ 1 1 £
©
14| 15 16 < Musest 85—
S
=
Partial sill  Partial sill T ’ Distance
Structure 0 Structure 1 Range

Figure 4 Example of particle used to generate avariogram model with two nested structures, through PSO
algorithm

During the first step N random variogram model curves (see Figure 5) are initialized. Then, the
objective function is computed by each particle, identifying the best particle in that iteration. Later,
the velocity function is computed, and determines how the particles position change in the next
iteration. The velocity function is defined by three sections The globallearning section, the individual
learning section and a proportional random section. The global learning is a vector between the
current particle and the best particle in the current iteration, and has the aim to force the current
particle to follow the path of the best sample of the entire population. On the other hand, the
individual learning section represents "the individual memory" of each particle, that keeps the best
historical performance of each particle without being influenced by the others. This keepsthe balance
between greedy particles and exploratory particles. Greedy particles look for the best result as soon
as possible with the undesirable consequenceto only find a local optimum. The proportional random
section is the responsible of a random value change, in some random selected group of particles in
each iteration, to increase the variability of possible results candidates. The random effect is
proportional because its effect increases with the iteration number, to avoid the accderated
convergence of the algorithm.

+—e Experimental variogram e—e Experimental variogram e—e Experimental variogram

) 4 Y ¥ — variogram model best part.

=

Lag or sample separation [m] Lag or sample separation [m] Lag or sample separation [m]

Iteration O Iteration M/2 Iteration M

Figure 5 Particle Swarm Optimization for variogram model search
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The Figure 5 shows how the particles population evolves in each iteration, changing their position
(considering the n-dimensional space), which is traduced in a new candidate of variogram model per
particle. As the number of iteration increases, particles tend to move closer to the best variogram
model curve.

This variogram fitting algorithm is full y automated and it is not necessary to predetermine what type
of models are used The only two prerequisites are: (i) to determine the minimum and maximum
values of each dimension of the particles constraining the feasible space solution, and(ii) define the
number of maximum nested structures, that are necessaryto calculate the dimension of the particle
position vector.

Due to the nature of the PSO algorithm and the multi -dimensional optimization problem, the
resulting model is not a unique solution. With K executions, it is possible to get K different solutions.
Therefore, it is necesary to define a number of iterations and particles enough to ensure the
convergence in a reasonable time.

In the implemented GPU version of the PSO(Papadakis & Bakrtzis, 2011), (Bali et al., 2015), (Hussain,
Hattori & Fujimoto, 2016), all the particle computations have been parallelized, i.e., knowing the
location of the best particle, all the particles update their position and obtain the objective function
result at the same time (each thread computes the operations for one particle). Thus, it is possible to
use a considerable number of particles (over 1000) and don't get a significative delay in the
computational time, therefore it is possible use a small number of iterations, that implies a better fit
in less time. It is worth to mention that the iterations over the population evolution remain
sequentially computed.

A set of sintethic data with a known variogram w as made through unconditional simulation using
LU decomposition algoritm . The data wasused as an input to the PSO algorithm to check the output
results against the known model and adjust internal algorithm parameters such aslearning rates,
number of particles and iterations.

Caseof Study

The case of study is divided in global and local calculation of the experimental and fitting model
variograms, using 28 999 drillholes samples and 87305 blasholes samples from an open pit mine
database The total block model grid has 327829 blocks.

For the global approach, the first test is computing the experimental variog ram with all samples from
drill hole dataset. The second tesis computing the experimental variog ram with the samples from
blasthole dataset. Both, the first and the second test are computed by CPU and GPUin order to
compare results and time performance. The third test is the model fitting using the PSO GPU
approach for drill holes and blastholes experimental variogram.

Given the hardware capabilities and the parallelized algorithms (experimental variogram and
variogram model fitting ) we propose obtaining an experimental variogram and a variogram model
in a local approach for several locationsusing each centroid of a deposit block model asthe reference.
To achieve this, we have two main steps:
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The first step is the search of sampleneighbors from each centroid of the deposit block model,
obtaining the correspondi ng distance between each sample and the centroid thatwill be usedin the
weighted variogram. In the case ofblastholes samples,we use a40 metersradio neighborhood. In
the case ofdrill holes samples,we use a500 metersneighborhood . The second step isiterating over
each file and get the experimental curve and then the variogram model curve. In the case ofdrill holes
samples we use weighted variogram implementation and in the case ofblastholes sampleswe use
the non-weighted variogram. In both cases we use the same GPU implementation to obtain the
variogram model curves.

The weighted GPU experimental variogram implementation assigns more relevance to samples that
are closer to a fixed reference (Ec. 2)We use this weighted algorithm to obtain local variograms
through samples from drill holes data base. The weights are obtained using(2)

where] is the weight associated to centroid ‘Qfor the samples pair Q0 18t 1w 11,7, is the
distance between centroid Qand sample "Qand Q j, is the distance between centroid ‘Qand sample 'Q

RESULTS AND DISCUSSI ON

All the following results are obtained from a computer with an Intel Core i7-5930K 3.5GHz processor,
32 Gb RAM, GPU NVIDIA Quadro M6000 24 GB, and a PCl-e SSD 480 GBThe data set used in the
experimental validation is consists of 4 files: The drillholes samples, the grid of block model that

supports the drill hole samples,the blastholes samples, and the grid of block model that supports the

blastholes. Following we show the details from each file:

Table 1 Data bases used in experimental validation

DH samples DH grid BH samples BH grid

Number of registers 28999 327829 87305 30735

Benchmark Traditional Variogram CPU vs GPU

Figure 6 shows the comparison in performance time between CPU and GPU gamv algorithm
(experimental variogram). The GPU show s an advantage of around 20 times less computational time
than the same algorithm running in CPU hardware. Furthermore, the bigger the data set size the
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better the computational time advantages of using a GPU-based version with respect to a CPU-based
implem entation.

GAMV Benchmark
e—e CPU time - GSLIB : :
e GPU time - CUDA
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Figure 6 Experimental Variogram ( gamv) Benchmark (CPU vs GPU)

Variogram Model curve from ideal experimental variogram

To testthe gamv fitting algorithm (variogram model curve fitting) an "ideal" experimental curve was
created, based on fixed parameters. The idea isto obtain the same parameters used to create the
experimental curve at the end of the PSO algorithm. The result converges to the original values with

a MSE of 0.000002 (See Figure 7).

1C
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Testing Version
Experimental Variogram and Variogram Model for testing samples.

Variogram
w
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—&— Variogram Model

0 2 4 6 i 10

Lag or Sample Separation [m]

Figure 7 Experimental variogram and variogram model for testing samples.

Experimental variogram and variogram model from Blasth oles samples

Figure 8 and Figure 9 present an irregular experimental variogram, due to lack of Blastholes samples
neighbors (40 meters) around each centroid of the grid. The variogram model has a huge MSE due
the irregularities in the experimental variogram. In this case, the experimental variogram do not
consider weights.

Blast Holes Samples 40 meters from 10969 centroid
Experimental Variogram and Variogram Model

6000
5000
4000

3000

Variogram

2000

1000 - N
—e&— Experimental Variogram

—&— Variogram Model

0 10 20 30 40 50 60

Lag or Sample Separation [m]

Figure 8 Experimental variogram and variogram model for Blastholes samples
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Blast Holes Samples 40 meters from 11147 centroid
Experimental Variogram and Variogram Model
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Figure 9 Experimental variogram and variogram model for Blastholes samples

Experimental variogram and variogram model from Drillh oles samples

Figure 10 and Figure 11 presenta better result compared with the blast holes testing, because the
drill holes samples are moreseparated than the blastholes samples. In this case, the variogram was
executed with the weighted version.

Drill Holes Samples 500 meters from 2658 centroid
Experimental Variogram and Variogram Model

50k
40k

30k

Variogram

20k

10k
—e— Experimental Variogram
—@&— Variogram Model

o] 100 200 300 400 500 600 700

Lag or Sample Separation [m]

Figure 10 Experimental variogram and variogram model for Drillh oles samples

12
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Drill Holes Samples 500 meters from 3508 centroid
Experimental Variogram and Variogram Model

Variogram
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Figure 11 Experimental variogram and variogram model for Drillh oles samples

Performance local experimental variograms GPU vs CPU

Table 2 shows the time performance of the experimental variogram obtained from the neighborhood
of each centroid of block model, using the drillh ole samples. The main time reduction is obtained
when the total effective computation time is compared, which only includes the operations to get the
results in memory, i.e. does not includes the time to read the data from file, transfer the data to
memory (GPU or RAM respectively) neither the time necessaryto write the results to a file. The GPU
approach reduces the time in almost 98.55% only considering the computation of the variogram,
while considering the read -write time, the GPU approach reduce in 42.49% the time of CPU approach.
This analysis proves that it is very important to avoid read -write operations that can slow d own
considerably the total time. In Table 2 we show the Percentage Difference, that is the difference
between gamv GPU time and gamv CPU time, divided by the average of the two values.

Table 2 Performancein Local variogram using D rillh oles samples, using GPU and CPU
approaches

gamv GPU gamv CPU E?f;::;ige
Local variograms 327829 327829 -
Mean samples per neighbor 1164.55 1164.55 -
Variables 1 1 -
Mean Effective computation time 0.00446792 sec. 0.307539 sec. 194.27%

13
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Mean Total Time (Includes read

. . 0.41039 sec. 0.713462 sec. 53.93%
and write to file)

TOTAL Effective computation

time 24 min 25 sec. 1 day 4 H O min 21 sec. 194.27%

Figures 12 and 13 show the block model (transparent) around 4 202.5m. elevation with the values
obtained from PSO GPU based variogram fitting parameters. 6 & r)mzolor bar showsthe first nested
structure @'Y @ &, @b€xined with de Arsenic drillhole samples data set(0 06 «zolor bar). We can see
that in the zones with less data set density, the range (6 & fmpis less thanin the zones with more
density, because with more data is possible to infer more continuity (Figure 13). Furthermore, in the
zones with less data density, the nugget effect is higher than in the denser zones, therefore the range
values obtained are lower.

Figure 12 Parameter e =| =}= . Ilri drill holes (= ysamples from the first nested structur e — variogram model
output from PSO GPU based algorithm

14
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Figure 13 Parametere 4 £« g drill holes (= ysamples from the first nested structure. Drillhole sample
density

Performance local variogram models GPU vs CPU

It is not possible to compare exactly the performance between the GPU and CPU in the variogram
adjust, because the algorithms are very different. In this case, not only the reduction of the
computation time is important, but also the human decision paramet ers based in the experience are
not more crucial for get satisfactory results.

CONCLUSION

The present paper achieves the goal of shoving the advantages of a parallelized algorithm compared
to the traditional sequential version. The GPU implementation not o nly increases the time
performance, but also makes possible the local variogram analysis, enhancing the simulation details
in a deposit.

The GPU takes considerable advantages over a CPU, when handlea large data set or a huge number
of iterations, reducin g around 20 times the computation time. By contrast, the development time

increases considerably, given the physical design constraints in the GPU (memory, blocks per grid,

thread per block, etc.).

The proposed future work includes implementing the search of nearestneighbors in the GPU, for
each centroid of block model, then compute the experimental variogram, and finally obtain ing the
variogram model curve in the same execution without passing through files between each step.
Observing the results, the bottleneck for GPU implementations is reading and writing time sto Hard
Disk Drives. These times delay increase the computational GPU time at least two orders of
magnitude. Additionally , we propose making the local computations including all samples from
Drillh oles with the weighted version, instead of only consider ing the nearestneighbors at a certain
distance.

15
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