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ABSTRACT 

Geological modelling aims at defining the spatial extent of geological units (GU) in a mineral deposit, 

from fragmentary information (drill hole data and surface mapping). To this end, the implicit surface or 

boundary modelling (ISM) is a novel approach in the mining industry imported from the computer graphic 

field. The ISM application to model the boundary of a GU is the following: for every drill hole sample, 

calculate the distance to the nearest sample belonging to another unit, assign a positive sign if the sample 

belongs to the target unit and a negative sign otherwise, then interpolate the signed distances in the 3D 

space using radial basis functions. Finally the zero-distance iso-surface (representing the boundary of the 

target GU) is extracted and transformed into a wireframe representation. 

 

This work presents a method combining implicit surface modelling and existing geostatistical approaches 

to generate an uncertainty model for a geological unit. The proposed method simulates the distance to the 

geological boundary in the study area, conditionally to the information at the data locations, in order to 

get the simulated GU by considering the zero-distance iso-surface. The variogram parameters and the 

distribution of distances can be derived from a reference geological model so that the simulated GU 

reproduces desired features. The proposed approach is applied to a data base from the Rosario Oeste 

deposit and compared to a traditional approach. Relevant aspects of ISM application in the geological 

modelling framework versus its original field of application are discussed. 

 

INTRODUCTION 

The geological modelling process consists in defining the spatial extension of geological units related to a 

petrophysical property such as lithology, alteration or mineral zone. To this end, one can distinguish 

between two main approaches:  

 Deterministic modelling, which provides a unique geological model to describe the deposit. The 

most common method is hand contouring and direct digitization of the geological unit boundaries.  

 Stochastic modelling, which uses geostatistical methods such as sequential indicator, truncated 

Gaussian and plurigaussian simulation in order to generate several plausible scenarios of the 

geological setting. This approach allows determining spatial uncertainty measures and aspects 

such as selectivity-dilution, optimal grid spacing and information effect, among others. 



 

 
In the scope of deterministic modelling, a new approach called implicit boundary modelling uses functions 

based on distance to extract the surface or boundary between different geological units. In recent years, 

implicit boundary modelling has been gaining popularity in the mining industry because of the easy 

generation and rapid update of geological models, as well as the repeatability of the process. The attractive 

features and the mathematical background formulation of implicit modelling make it interesting to explore 

and expand to the stochastic modelling approach, by combining implicit modelling and geostatistical 

methods. 

 

OVERVIEW OF CURRENT GEOLOGICAL MODELLING APPROACHES 

Hand Contouring-Direct modelling 

It consists in defining polygons to represent the extension of the geological units, based on drill hole data 

projected into planes such as vertical sections and plan views. Then, one generates a 3D wireframe that 

honours the contacts of the units at the drill hole locations. This approach allows the explicit incorporation 

of geological knowledge of the deposit; however, it can be time consuming depending on the complexity 

of the geological units and the required resolution. Another drawback is the non-repeatability and possible 

geologist “bias” effect. 

Implicit Modelling  

The implicit boundary modelling is an imported technique from the computer graphic field, designed to 

generate a surface representation from a dense scattered 3D point data set, from 3D laser scanners [1]. It is 

important to notice that the original aim of the method is to find a surface representation of dense scattered 

data, whereas the goal of geological modelling is to predict the spatial extension of the geological units 

using a surface representation based on fragmentary and scarce data, such as drill holes and surface 

mapping. 

 
The core of the method, in the case of modelling two complementary geological units, can be summarised 

as follows: 

 For each available drill hole sample, calculate a distance to the nearest geological contact. Such a 

distance can be the Euclidian distance or an anisotropic distance. Assign a positive sign to the 

previous calculated distance if the sample belongs to the target geological unit and a negative sign 

otherwise. 

 Interpolate the signed distance function over the domain of interest by using an exact interpolator 

such as radial basis functions, inverse distance interpolation or kriging. 

 Extract the zero-distance iso-surface as the boundary of the target geological unit, or flag the 

estimated nodes depending on the sign of the interpolated distance function. 

 

The process is illustrated on a synthetic example shown in Figure 1, using four vertical drill holes and two 

units. 

Stochastic models 

The most common methods to generate a stochastic geological model are sequential indicator simulation 

(SIS) [2] and truncated Gaussian simulation (TGS) [3]. Both methods rely on a codification of the 

geological units into indicators. 

 



 

 

Figure 1 Example of application of implicit boundary modelling: (a) drill hole data; (b) distances  

calculated in samples and interpolated distances; (c) final geological model after truncation 

Sequential Indicator Simulation (SIS) 

This method rests on the estimation of the conditional distributions of the geological unit indicators at 

each target node, by means of indicator kriging [4], using the sample data and the previously simulated 

nodes as conditioning information. From the conditional distributions, a unit is then drawn by Monte 

Carlo simulation. The main advantages of the method are the simple incorporation of hard and soft data 

and the possibility to express spatially continuous patterns. As a counterpart, indicator kriging suffer from 

mathematical inconsistencies such as order relation violations, which need to be corrected [5]. 

Truncated Gaussian Simulation (TGS) 

This method relies on the truncation of a Gaussian random field (GRF) in order to generate realisations of 

geological units. The main features are the reproduction of the indicator variograms associated with the 

geological units and a hierarchical contact relationships between units. This method is therefore adequate 

for deposits where the units exhibit a hierarchical spatial distribution, such as depositional environments 

or sedimentary formations. Plurigaussian simulation [6] is an extension of truncated Gaussian simulation 

that incorporates two or more Gaussian random fields and a truncation rule and allows reproducing 

complex contact relationships between the geological units. 

 

IMPLICIT BOUNDARY SIMULATION (IBS) 

Implicit boundary simulation has been explored as a global uncertainty model, based on the available data 

[7] or on a reference model to infer parameters [8]. The proposed simulation approach is presented for 

both options.  

Implicit Boundary Simulation From Available Data 

If the available data is dense enough to infer the spatial configuration of the geological units, the following 

approach can be used: 

 Calculate the distance of each sample to the nearest contact  



 

 Transform the calculated distances into normal scores 

 Perform variogram analysis of the transformed distances 

 Simulate the transformed distances, conditionally to the available samples, by using a multivariate 

Gaussian simulation algorithm [9, 10] 

 Truncate the resulting realisations using the Gaussian value associated with the zero distance. 

 
As an illustration, Figure 2 presents an example showing two realisations of the transformed distances 

(top) and the associated categorical realisations after truncation (bottom). 

 

 

Figure 2 Example of implicit boundary simulation, showing simulated  

Gaussian distance fields (top) and categorical realisations (bottom) 

Implicit Boundary Simulation Using a Reference Model 

When the available data are scarce or one wants to impose the properties of a certain phenomenon to the 

realisations, a reference model (RM) can be used. The RM can be derived from a picture or an existing 

geological model. In this case, the following approach is used: 

 In the reference model, calculate the distance D
RM

 of each node to the nearest contact  

 Transform the calculated distances into normal scores. Store the RM transformation function and 

the Gaussian value associated with the zero distance. 

 Perform variogram analysis of the transformed distances 

 In the sample data base, calculate the distance D
sample

 of each sample to the nearest contact. Since 

the data base represents only a part of the reality, D
sample

 is actually the maximum possible 

distance to the nearest contact, and the true distance to the contact (D
true

) can range from 0 to the 

distance calculated from the samples: 

 

],0[ sampletrue DD 

  



 

 Using the transformation function and variogram determined with the reference model, simulate 

the true distances D
true

 of the samples to the nearest contact, conditionally to the previous interval 

constraint. This can be achieved using an iterative algorithm known as the Gibbs sampler [6, 11]. 

 Simulate D
true

 over the domain, using a multivariate Gaussian simulation algorithm 

 Truncate the resulting realisations to obtain the simulated geological units. 

 

By repeating this procedure, a set of realisations reproducing the indicator variogram and proportion of the 

reference model, as well as the known geological units at the sample locations, can be generated. 
 

APPLICATION TO A MINING DATA SET 

Presentation of the Data 

Implicit boundary simulation is applied to the mineral zones of the Rosario Oeste deposit, owned by 

Compañia Minera Doña Ines de Collahuasi (CMDIC), which is a structurally controlled high sulphidation 

system. A set of 53,735 diamond drill hole samples, composited at a length of 2m and located in a volume 

of 175 m × 2000m × 700m, are available, with information of the mineral zones and total copper grades 

(Figure 3a). The main mineral zones in the area of study are: 

 Pyritic primary: a barren unit with low copper content 

 Sulphide zone: a mineralised unit composed by primary and secondary sulphides ore. Its geometry 

is highly controlled by geological structures (veins, faults and massive sulphide veins) with 

mineralisation of chalcocite, minor bornite and chacopyrite and/or enargite with pyrite, associated 

to a late event of the same hydrothermal system responsible of the copper porphyry mineralisation 

of Rosario. 

The connectivity of sulfhide unit has been confirmed by trenches. This connectivity and sinuosity is 

reflected in the plan interpretation shown in Figure 3b. 

,  

 

Figure 3 a, perspective view of drill hole samples; b, plan view of the interpreted sulphide zone  

Implicit Boundary Simulation 



 

The implicit simulation approach uses the available samples to calculate the distribution of distances to the 

nearest contacts and the variogram of their normal score transforms. This approach is adopted because the 

amount of information is enough to infer those properties. Figure 4 presents the normal score variogram, 

which shows a smooth behaviour near the origin. This is explained by the spatially continuous nature of 

the distance-to-contact variable. The variogram model considers nested Gaussian structures and a very 

small (0.1% of the sill) nugget effect to avoid numerical instabilities. 

 

Figure 4 Variogram of transformed distances along the main directions of anisotropy (N80ºE, N10ºW and vertical) 

 

It is important to point out that the calculated distances present a trend to increase towards the outer part of 

the deposit (non-stationary feature); however this effect is reduced by the Gaussian transformation. Figure 

5 presents two realisations superimposed with the conditioning drill hole data. It is possible to appreciate 

the effect of the smooth variogram model, which implies the existence of regular boundaries for the 

simulated sulphide unit.. Also the resulting realizations resemble the geological interpretations generated 

by the CMDIC geology team 

 

Figure 5 Realisations of mineral zones at Rosario Oeste using implicit boundary simulation 



 

 

PERFORMANCE EVALUATION 

To evaluate the performance of implicit boundary simulation, a comparative analysis against sequential 

indicator simulation is presented. It consists of a cross-validation exercise, in which one removes one drill 

hole at a time and then simulates its samples conditionally to the remaining drill hole data. For both 

methods, the same simulation parameters (search distances and amount of conditioning data) are used and 

25 realisations are generated. This way, it is possible to compare each realisation with the true geological 

unit at every drill hole sample. 

 

For implicit boundary simulation the distances to the nearest contact and Gaussian transformation function 

are recalculated when a drill hole is extracted, so as to avoid a “memory” effect of the removed drill hole. 

The indicator variogram associated with the sequential approach is presented in Figure 6; the fitting uses a 

nugget effect and nested spherical models. 

 

Figure 6 Variogram of sulphide indicator along the main directions of anisotropy (N80ºE, N10ºW and vertical) 

Proportion of Sulphide Unit 

Figure 7 shows the cumulative distribution functions of the sulphide proportion, for each method (SIS and 

IBS) and for the reference data. IBS gives proportions that are slightly closer to the true one. 

 

 



 

Figure 7 Distribution of sulphide proportion for each method and for the samples  

Match Percentage of Geological Unit 

For each realisation, one can calculate the percentage of match between the true geological unit and the 

simulated unit at each sample. Figure 8 presents the match percentage distribution over the realisations for 

both methods. IBS exhibits a consistently higher performance (~66% of match) than SIS (~62% of 

match), implying a better prediction of the geological units. 

 

 

Figure 8 Match percentages between true and simulated geological units 

Variogram Reproduction 

Figure 9 displays the expected down-the-hole indicator variogram (average indicator variogram over the 

realisations) for both methods and for the data values. IBS better reproduces the shape of the true indicator 

variogram, while SIS yields to a greater nugget effect. 

 

 

Figure 9 Expected down-the-hole sulphide indicator variograms, for both simulation methods and for the samples 

Sulphide Interval Length Distribution  



 

For each realisation, one can measure the lengths of the drill hole intervals corresponding to the sulphide 

unit. The distribution of such lengths is then compared against the true length distribution calculated from 

the sample data. It is seen (Figure 10) that IBS yields a length distribution closer to the true distribution. 

For example 98% of the total meters of sulphide belong to intervals greater than 10m, whereas 95% of the 

simulated intervals by IBS are greater than 10m and just an 85% in the case of SIS. 

 

 

Figure 10 Distribution of contiguous meters of sulphide unit for IBS, SIS and samples 

Discussion 

The overall performance of IBS is better than that of SIS, especially in relation to the sulphide indicator 

variogram and to the interval length distribution. The regular boundaries and connected patterns resulting 

from IBS stem from the spatial regularity of the distance variable, for which a Gaussian variogram model 

has been used. 

 

In addition to the geological unit, the implicit approach provides the distance to the nearest contact, which 

conveys information about the configuration of the geological unit. This fact could improve the prediction. 

 

CONCLUSIONS 

A simulation method for categorical variables has been presented, which combines geostatistical methods 

and an implicit boundary modelling approach. It could be adequate for geological scenarios where the 

spatial regularity of boundaries and connectivity of the units are important factors and cannot be directly 

achieved by traditional geostatistical methods. 

 

The implicit boundary approach provides great flexibility in terms of the distance function used and in 

terms of incorporation of soft data. It can be extended to more than two geological units, following a 

hierarchical process, which deserves further studies. 
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