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ABSTRACT 

Truncated Gaussian simulation (TGS) and plurigaussian simulation (PGS) are widely accepted 

methods for generating realisations of geological domains (lithofacies) that reproduce contact 

relationships. The realisations can be used to evaluate transfer functions related to the 

lithofacies occurrence, the simplest ones of which are the probability of occurrence of each 

lithofacies and the most probable lithofacies at each location of the deposit. 

 

In order to get the probability of occurrence of a lithofacies, the simulation approach can be 

time consuming. A shortcut method (truncated Gaussian kriging, or TGK) is proposed, based on 

the truncated Gaussian simulation model and the well-known multi-Gaussian kriging method. 

In this method, the variogram analysis stage and the definition of the truncation rule remain the 

same as in the traditional truncated Gaussian simulation approach. 

 

The formulation of the method is halfway between spatial estimation and simulation. The key 

point is to apply the truncation rule to the local distribution of the underlying Gaussian random 

field used in the TGS approach. Because the relationship between the lithofacies indicators and 

this Gaussian random field is not one-to-one, the latter is simulated at the data locations 

conditionally to the available indicator data. The local distributions of the Gaussian random 

field at the target locations are then obtained by considering the simple kriging estimates and 

simple kriging variances, as it is done in the multi-Gaussian kriging approach. 

 

TGK can be used as a step previous to simulating lithofacies, or as an alternative to indicator 

kriging, when the lithofacies exhibit a hierarchical spatial disposition or when such a 

disposition is a desirable feature. The proposed method is naturally extensible to plurigaussian 

simulation. 

 

INTRODUCTION 

Currently, numerical models of the spatial distribution of geological domains (lithofacies) can 

be generated by geostatistical methods. Two approaches are commonly used to achieve this 

goal: stochastic simulation and local uncertainty models. 



 

Stochastic simulation consists of creating multiple realisations of the lithofacies of the deposit. 

The realisations can be used to evaluate transfer functions related to the lithofacies occurrence, 

the simplest of which is the probability of occurrence of each lithofacies. In contrast, local 

uncertainty models directly provide the probabilities of occurrence of the lithofacies without 

generating several realisations. The main methods associated with stochastic simulation are 

truncated Gaussian (TGS), plurigaussian (PGS) and sequential indicator (SIS) simulation, 

whereas the most common method for local uncertainty models is indicator kriging (IK). This 

paper presents a local-stochastic approach to obtain the probability of occurrence of each 

lithofacies based on truncated Gaussian simulation and multi-Gaussian kriging (MGK). 

 

OVERVIEW OF CURRENT METHODS 

Indicator Kriging (IK) 

Indicator kriging [1, 2] is a non-parametric technique to calculate the conditional cumulative 

distribution function (CCDF) of a set of indicators, which are a binary coding of a categorical 

variable representing the lithofacies. It basically consists of estimating the indicator values using 

a kriging or cokriging of indicator data. The estimated values of each indicator are interpreted as 

the probability density function of the lithofacies, generating a local model of the probabilities 

of occurrence of lithofacies. 

 

Sequential Indicator Simulation (SIS) 

Sequential indicator simulation [2] rests on the sequential estimation of the CCDF associated 

with the lithofacies coded as indicators. The estimation is performed by indicator kriging using 

the sample data and previously simulated nodes as conditioning information. From the CCDF a 

lithofacies is drawn by Monte Carlo simulation at each node. The main advantages of the 

method are: its auto-conditional nature, the simple incorporation of soft data and the possibility 

to express spatially highly continuous patterns. As a counterpart, IK and consequently SIS 

suffer from order relation violations in the CCDF, among others problems [3].  

 

Truncated Gaussian Simulation (TGS) 

The truncated Gaussian simulation method [4] relies on the truncation of a single Gaussian 

random field (GRF) in order to generate realisations of lithofacies. The main feature is the 

reproduction of the indicator variograms associated with the lithofacies and the hierarchical 

contact relationship among them. This method is adequate for deposits where the lithofacies 

exhibit a hierarchical spatial distribution, such as depositional environments or sedimentary 

formations. 

 

The procedure to obtain lithofacies realisations using TGS is described as follows: 

 

   Establish the lithofacies proportions and their contact relationships. Summarise this 

information in a truncation rule (flag). 

   Using the truncation rule, perform variography of the lithofacies indicators through the 

determination of the covariance function of the underlying GRF. 

   Simulate the GRF at the data locations conditionally to the lithofacies coding. This step 

is performed using the Gibbs sampler algorithm [5]. As the relationship between the 

lithofacies indicators and GRF is not one-to-one, several realisations should be 

considered for the next steps. 



   Simulate the GRF at the target locations using the values generated at the previous step 

as conditioning data. 

   Truncate the realisations according to the truncation rule. 

 

Plurigaussian Simulation (PGS) 

Plurigaussian simulation [6, 7] is an extension of truncated Gaussian simulation that 

incorporates two or more Gaussian random fields and a set of truncation rules. The use of 

several GRFs allows reproducing complex contact relationships between the lithofacies. The 

workflow of PGS is similar to TGS. 

 

Multi-Gaussian Kriging (MGK) 

Multi-Gaussian kriging [8] is a method to calculate the conditional distribution of a GRF at a 

point support. It has been used to establish the risk of exceeding or falling short of a threshold 

for a continuous (not necessarily Gaussian) variable. It relies on the application of the multi-

Gaussian hypothesis and the property of orthogonality of simple kriging. 

 

The key property of the multi-Gaussian model is that the multivariate distributions of a GRF are 

fully defined by its first- and second-order moments: mean and covariance function. The 

orthogonality property is that the simple kriging estimator is not correlated with any linear 

combination of the data. Therefore, it can be shown that the conditional distribution of a GRF is 

Gaussian, with mean equal to the simple kriging estimate and variance equal to the simple 

kriging variance.  

 

The workflow of the application of multi-Gaussian kriging to get the conditional distribution of 

a continuous variable is described below: 

 

   Transform the raw variable into a Gaussian variable. Store the transformation table. 

   Perform simple kriging of the Gaussian variable. At each target location, the conditional 

distribution is fully defined by the simple kriging estimate and simple kriging variance. 

   Perform numerical integration at each target location: 

- Sample the conditional Gaussian distribution using Monte Carlo simulation 

- Back-transform every sampled Gaussian value according to the transformation table 

- The distribution of back-transformed values is an approximation to the distribution 

of the original variable conditional to the available data. From this distribution, 

several measures can be derived, e.g. expected value (mean of the distribution), 

conditional variance (variance of the distribution), probability to exceed a given 

threshold, or confidence intervals. 

 

PROPOSED APPROACH: TRUNCATED GAUSSIAN KRIGING (TGK) 

The proposed method is based on the following aspects to get the probability of occurrence of a 

lithofacies: 

 

   To generate realisations of lithofacies, TGS use Gaussian simulations that rely on the 

multi-Gaussian hypothesis.  

   The conditional distributions of the underlying GRF used in TGS can be obtained by the 

multi-Gaussian kriging approach. 

   The truncation rule can be interpreted as a particular transformation from a categorical 

variable (lithofacies) to a continuous variable (GRF). This transformation is similar to 



the one used to get the conditional distribution of a continuous variable in MGK, except 

that the truncation rule is not one-to-one.  

 

Therefore, it is possible to calculate the probability of occurrence of each lithofacies without 

simulating the GRF in the domain. Instead the multi-Gaussian approach can be used to obtain 

the conditional distribution at each target location. As the truncation rule is not one-to-one, we 

will need several independent realisations of the GRF at the data locations as conditioning data 

(see TGS workflow). Therefore we will have to truncate several conditional Gaussian 

distributions with different mean values but with the same kriging variance; recall that the 

simple kriging variance does not depend on the data values. 

  

The workflow of the proposed method is presented only for the stationary case, i.e., when the 

proportions of the lithofacies remain constant over the domain under study. 

 

Consider  as  contiguous lithofacies present in the deposit. The indicators associated 

with these lithofacies are defined as: 

 

   (1) 

 

Let  be a standard GRF with covariance function . The  lithofacies are defined by 

 thresholds and every lithofacies can be expressed as the truncation of  as follows: 

 

   (2) 

 

where  and  stand for the lower and upper truncation thresholds for the i-th lithofacies and 

. For lithofacies  and  the lower and upper thresholds are set to 

 and , respectively. The proportion of the i-th lithofacies is defined by: 

 

  (3) 

 

with  the standard Gaussian cumulative density function. Keeping this notation in mind, the 

workflow of TGK is the following: 

 

   Establish the lithofacies proportions and their contact relationships. Summarise this 

information in a truncation rule. 

   Using the truncation rule, perform variography of the lithofacies indicators through the 

determination of the covariance ) of the underlying GRF. 

   Simulate the GRF at the data locations conditionally to the lithofacies coding. Several 

( ) realisations or sets of Gaussian values are generated at this step. 

   Perform simple kriging using the covariance of the GRF and the previous realisations as 

conditioning data. A single execution of simple kriging is needed to determine the 

kriging weights and kriging variance. 

   At this stage, we have several kriging estimates and a single kriging variance at each 

target location. Using the multi-Gaussian hypothesis, the conditional probability for the 

i-th lithofacies and j-th realisation can be expressed as follows: 

 

  (4) 

 

where  is the simple kriging estimate calculated on realisation  and  is the 

simple kriging variance at location . 



   The final probability for each lithofacies at location  can be expressed as: 

 

  (5) 

 

Because of the use of multiple realisations of the GRF at the data locations and of simple 

kriging to obtain the conditional distribution of the GRF at the target locations, the proposed 

method is in-between simulation and kriging estimation. 

 

APPLICATION OF TRUNCATED GAUSSIAN KRIGING 

A synthetic case study is presented, which considers the estimation of the probability of three 

lithofacies (coded as lith1, lith2 and lith3) that are embedded units. A set of 189 sample data is 

available to calculate the probabilities. The data are distributed over a 500 m × 500 m domain, 

as shown in Figure 1. 

 

 

Figure 1: Data locations showing lithofacies coding 

 

Basic parameters. The contact relationships, declustered proportions and threshold values are 

summarised in Figure 2. The truncation rule reflects the hierarchical disposition of the 

lithofacies. 

 

 

Figure 2: Truncation rule, showing contact relationship, proportions and  

Gaussian thresholds associated with the lithofacies 

 



Variography. At this step the indicator variograms are fitted by defining the covariance  

of underlying GRF (Table 1). 

 

Table 1: Covariance model of the underlying GRF 

Structure Sill contribution Major range (60°E) Minor range (30°W) 

Gaussian 1 120 80 

 

Gibbs sampler. Several sets of Gaussian values are generated at the data locations in order to 

honour the truncation rule and the covariance function . Two realisations are presented in 

Figure 3. 

 

 

Figure 3: Two realisations of the Gibbs sampler algorithm 

 

Modelling the local distributions. Simple kriging is performed, given the covariance  

and the realisations at the data locations as conditioning data. Figure 4 presents two simple 

kriging estimates, derived from the realisations shown in Figure 3 and their kriging variance, 

which fully defines the conditional distributions of the GRF. 

 

 

Figure 4: Two simple kriging estimates from two Gibbs sampler realisations and kriging variance 

 

Calculation of the conditional probabilities of lithofacies. The truncation rule is applied to 

the local distributions of the underlying GRF (Eq. 5). The thresholds are directly computed by 

using the global proportions of lithofacies, as per Eq. 3. 

 

Figure 5 presents a workflow of the procedure, where the upper Gaussian distribution represents 

the prior (non-conditional) model used with the contact relationship and global proportions 



expressed as the truncation of the underlying GRF by threshold T1 and T2. The lower Gaussian 

distribution represents a conditional distribution of the GRF at a given location obtained by 

MGK.  

 

 

Figure 5: Local probability calculations 

 

The resulting local probabilities and conditioning data are presented in Figure 6. The most 

probable lithofacies is also calculated and presented in Figure 7, where the contact relationship 

imposed by the truncation rule is clearly expressed. 

 

For comparison, an indicator kriging of the lithofacies was performed using the same data and 

search parameters as in TGK. In this case the most probable lithofacies show violations of the 

contact relationship in several instances (Figure 8). This feature happens when there are data of 

lith1 near to lith3 without data of lith2 to restrict the estimation. At the same locations the 

truncated Gaussian kriging approach (Figure 7) generates the intermediate unit (lith2). 

 

 

Figure 6: Maps of probabilities of occurrence of each lithofacies using TGK 

 



 

Figure 7: Most probable lithofacies using truncated Gaussian kriging (TGK) 

 

 

Figure 8: Most probable lithofacies using indicator kriging (IK) 

 

DISCUSSION 

The proposed approach allows generating a probability model of each lithofacies that presents a 

hierarchical disposition, whereas for indicator kriging this feature is not guaranteed and the 

amount of “violations” is likely to increase with the number of lithofacies.  

 

TGK is naturally extensible to consider complex contact relationships between lithofacies, using 

the plurigaussian simulation framework instead of the truncated Gaussian. In this case the 

proposed method needs to determinate the conditional multivariate distribution of two or more 

underlying GRFs. To achieve this goal, it is necessary to perform multi-Gaussian kriging or 

cokriging, depending on whether or not the GRFs are correlated. The authors are working on 

that extension named plurigaussian kriging. 

 

In geostatistics, there is a correspondence between some stochastic imaging methods and local 

uncertainty models, as described in Table 2. For sequential indicator simulation and Gaussian 

simulation, there already exists an associated model of local uncertainty. However for truncated 

Gaussian and plurigaussian simulations, there was no associated model until the present work. 

  



Table 2: Correspondence between stochastic imaging and local uncertainty models 

Local uncertainty model Stochastic imaging Type of model Type of variable 

Indicator kriging Sequential indicator simulation non-parametric Categorical / Continuous 

Multi-Gaussian kriging Gaussian simulation multi-Gaussian Continuous 

Truncated Gaussian kriging Truncated Gaussian simulation multi-Gaussian Categorical 

Plurigaussian kriging Plurigaussian simulation multi-Gaussian Categorical 

 

The conditional distributions of the underlying GRF in conjunction with the truncation rule can 

be used as input to p-field simulation [9] in order to generate realisations of the lithofacies that 

honour the contact relationships and lithofacies indicator variograms. 

 

CONCLUSIONS 

A methodology to obtain the probabilities of occurrence of lithofacies and to calculate the most 

probable lithofacies has been presented. It allows generating lithofacies maps in a more 

geological way by considering and reproducing the contact relationships between lithofacies. 

The proposed approach can be used prior to simulation or as an alternative to the traditionally 

used indicator kriging. It is extensible to more complex contact relationships by considering two 

or more GRFs, as done in plurigaussian simulation. 

 

The formulation of the method is robust from a theoretical point of view, since it is based on 

two well accepted approaches (truncated Gaussian simulation and multi-Gaussian kriging). 

There is no order relation violation or border effect. The non-stationary case can be addressed 

by a procedure similar to the one used in plurigaussian simulation, by incorporating local 

proportion curves. 
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